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Correct microcanonical ensemble in molecular dynamics

John R. Ray and Hongwei Zhang
Department of Physics and Astronomy, Kinard Laboratory of Physics, Clemson University, Clemson, South Carolina 29634-1

~Received 9 November 1998!

The statistical-mechanics ensemble corresponding to equilibrium molecular dynamics simulations is differ-
ent than the usual microcanonicalEVN ensemble. Historically molecular dynamics has been associated with
theEVNM ensemble, whereM is the constant total linear momentum of the system. We show that the correct
ensemble associated with molecular dynamics is theEVNMG ensemble whereG is the constant of the motion
associated with Galilean boosts. The ensemble associated with molecular dynamics simulations has, appar-
ently, not been previously recognized. An earlier problem with the pressure in the new ensemble disappears.
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I. INTRODUCTION

The usual microcanonical ensemble of equilibrium sta
tical mechanics corresponds to a system of a fixed numbe
particlesN, in a volumeV, having an energyE. In the ter-
minology of statistical mechanics this is theEVN ensemble,
and corresponds experimentally to an isolated system.
fact that trajectories in equilibrium molecular dynami
simulations generate an ensemble that is different than
EVN ensemble has long been recognized@1–3#. Because the
forces are all internal forces, which obey Newton’s third la
and the imposition of periodic boundary conditions remov
the external force that the container walls would exert on
system of particles, the total momentum of theN particles is
also conserved. The phase space must, therefore, be
stricted to correspond to constant energyE and constant tota
linear momentumM . Because we assume that the simulat
uses periodic boundary conditions, the total angular mom
tum is not a constant of the motion and therefore plays
role in our discussions. Hence, molecular dynamics app
to generate theEVNM ensemble, which was named the m
lecular dynamics ensemble by Wood@2#. In theEVNM en-
semble all states (r ,p) in phase space, consistent with th
given values ofE, V, N, andM , have equala priori prob-
ability.

A comprehensive treatment of this molecular dynami
EVNM , ensemble was given by C¸ ağin and Ray@4#. They
also extended the treatment to the canonical orTVNM en-
semble @5#. In molecular dynamics this latter ensemb
would be associated with one of the versions of the exten
variable method of Nose´ @6# to generate the canonical en
semble for the system. The treatment of the ensemble
Ref. @4# makes use of the exact Laplace transform method
treating energy shell ensembles presented by Pearson,
cioglu, and Tiller @7#. In related work Lustig@8# used the
method of Refs.@4,5,7# to discuss a system of rigid mo
ecules in theEVNM ensemble while Friedman and Raine
@9# used theEVNM ensemble theory to study equal tim
velocity correlations in this ensemble.
PRE 591063-651X/99/59~5!/4781~5!/$15.00
-
of

he

he

,
s
e

re-

n
n-
o
rs

,

d

in
f

ali-

One result in Refs.@4,5# was that the expression found fo
the pressure, by taking the derivative of the entropy w
respect to the volume, was the same in theEVN andEVNM
ensembles. This result was surprising because a direct a
cation of the virial theorem from Newton’s laws gives a d
ferent result in these two ensembles; the constraint of c
stant total momentum leads to a reduction of the numbe
degrees of freedom by 3 in the ideal gas part of the pres
in the virial derivation. In the present paper we resolve t
problem by showing that the ensemble corresponding to
lecular dynamics simulations is really theEVNMG en-
semble, whereG is another quantity that is a constant of th
motion. In this ensemble we obtain an expression for
pressure that agrees with the virial theorem derived fr
Newton’s laws. Apparently this result has not been rec
nized before in discussions of molecular dynamics. For la
N it would give only a small,O(1/N), correction to the
pressure. The constants of the motion represented byG are
associated with Galilean boosts~transformation between in
ertial reference frames that have infinitesimally different v
locities! andG is the generator of infinitesimal boosts likeE
is the generator of infinitesimal time translations andM is
the generator of infinitesimal spatial translations. The int
duction of the constantsG into theEVNM ensemble corrects
the problems with the pressure and related quantities in R
@4,5# while leaving other results unchanged and gives,
nally, the correct ensemble for molecular dynamics, which
the EVNMG ensemble. The introduction ofG into the
TVNM ensemble also corrects the pressure problem in
same way; the correct ensemble to associate with No´’s
canonical ensemble molecular dynamics is theTVNMG en-
semble; withM50 @5#. The numerical value ofG is related
to the initial position of the center of mass of the system

II. JACOBI COORDINATES

The Hamiltonian for our system has the form of the k
netic energy of theN particles and the potential energ
which we assume depends only on the interparticle d
4781 ©1999 The American Physical Society
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tances; that is, no external fields are present,

H~r ,p!5(
i 51

N pi
2

2mi
1U~r !. ~1!

Many of the special forms that we shall introduce below
associated with the simple quadratic momentum depend
assumed in Eq.~1!.

It is convenient to introduce a set of coordinates and m
menta, referred to as Jacobi coordinates and momenta
the later discussion of phase space integrals. These co
nates are defined so the firstN21 Jacobi coordinates ar
internal coordinates while theNth Jacobi coordinate is th
center of mass coordinate of the system of particles. FoN
particles the Jacobi coordinates and momenta are define
@10–12#

Ra5

(
i 51

a

mir i

(
i 51

a

mi

2ra11 , a51,2, . . . ,N, rN1150 ~2!

Pa5
ma11

M1
a11 (

i 51

a

pi2
M1

a

M1
a11 pa11 , a51, . . . ,N21,

PN5(
i 51

N

pi ~3!

where

Mi
j5(

k5 i

j

mk , i< j , i , j ,k51,2, . . . ,N. ~4!

Note that the Jacobi coordinates give the position of the c
ter of mass of the previous particles with respect to the n
particle. The inverse of these transformations along w
many other results concerning Jacobi coordinates and
menta are worked out in detail in Ref.@12#. The Jacobi co-
ordinates are orthogonal and are a generalization of the u
coordinates for the center of mass and relative coordinate
a two particle system. The Jacobi coordinates are canon
so the Jacobian~determinant of the transformation matrix!
from the original Cartesian coordinates and momenta to
Jacobi coordinates and momenta is equal to one. Also
Jacobians for the transformation from the Cartesian coo
e
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-
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nates alone or the momenta alone are also equal to one@12#.
The kinetic energy of the system in Jacobi coordinates is

K5(
i 51

N pi
2

2mi
5 (

a51

N21 Pa
2

2ma
1

PN
2

2mN
, ~5!

where the reduced massesma are defined by

ma5
ma11M1

a

M1
a11 , a51,2, . . . ,N21, mN5M1

N . ~6!

Equation~5! gives the kinetic energy in terms of the intern
kinetic energy plus the kinetic energy of the center of m
and is a well known result in classical mechanics. The
duced masses satisfy the following product rule:

)
a51

N21

ma5

)
i 51

N

mi

mN
, ~7!

wheremN is the total mass of the system.

III. EVNMG ENSEMBLE

The EVN andEVNM ensembles have been discussed
some detail in Refs.@4,5,7# so we shall present only th
details for theEVNMG ensemble. Because the total line
momentum of ourN particle system is constant, we can i
tegrate this equation and obtain three different constant
the motion which we callG,

G5(
i 51

N

pi t2(
i 51

N

mir i . ~8!

Note that the value ofG is associated with the initial position
of the center of mass and from the point of view of Galile
transformations it is the generator of transformations to in
tial frames moving at infinitesimal velocities with respect
a given inertial frame@13#. We shall refer to the constrain
thatG be constant as the boost constraint. The entropy of
system in theEVNMG ensemble is the logarithm of th
phase volume

S~E,V,N,M ,G!5kB ln F~E,V,N,M ,G!, ~9!

where the phase volume has the form
e

F~E,V,N,M ,G!5E Q~E2H!dS M2(
i 51

N

pi D •dS G2t(
i 51

N

pi1(
i 51

N

mir i D d3Nrd3Np/CN , ~10!

andCN is a constant, which forc different components has the valueCN5Ah3NPa51
c Na! andN5(a51

c Na , with Na being the
number of particles of typea andA is a constant associated with thed functions involvingM andG, and makes the phas
volume dimensionless. For theEVN ensemble the phase volume has the form of Eq.~10! but without the twod function
constraints andA51 @4,7#. For theEVNM ensemble the phase volume has the form of Eq.~10! without the d function
involving the boost constraint@4#. Transforming to Jacobi momenta in Eq.~10! and integrating overPN the phase volume
becomes
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F5E QS E2
M2

2mN
2 (

a51

N21 Pa
2

2ma
2U D •dS G2tM1(

i 51

N

mir i D d3~N21!Pd3Nr /CN . ~11!

In this form of the phase volume we can now carry out the integrals over the remaining Jacobi momenta using, for e
the Laplace transform method of Pearson, Halicioglu, and Tiller@7# to obtain

F5E S E2
M2

2mN
2U D 3~N21!/2

QS E2
M2

2mN
2U D •dS G2tM1(
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N
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C05CNY S ~2p!3~N21!/2)
a51

N21

ma
3/2D

5CNmN
3/2Y S ~2p!3~N21!/2)

i 51

N

mi
3/2D .

We now transform to Jacobi coordinates and carry out
integral over the center of mass coordinate in Eq.~12! to end
up with

F5E S E2
M2

2mN
2U D 3~N21!/2

3QS E2
M2

2mN
2U Dd3~N21!R/@C0G~3~N21!/211!#.

~13!

This step has the effect of reducing the number of spa
integrations by 3 because the integral over the boostd func-
tion does not change any other parts of the integrand; re
we assume the potential energy depends only on the rela
coordinates and not the center of mass coordinate.

The density of states can be obtained by differentiat
the phase volume with respect to the energy, which give

v5
]F

]E
5E S E2

M2

2mN
2U D 3~N21!/221

3QS E2
M2

2mN
2U Dd3~N21!R/@C0G„3~N21!/2…#.

~14!

In order to find the average value of a quantityA we can
integrate using the probability density in phase spa
namely,

WEVNMG~r ,p!5Cd~E2H!dS M2(
i 51

N

pi D
3dS G2t(

i 51

N

pi1(
i 51

N

mir i D , ~15!
e
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whereC is the normalization constant. If the functionA de-
pends only on the internal spatial coordinates we may ob
the average value as an integral over configuration sp
using the probability density

WEVNMG~R!5CS E2
M2

2mN
2U D 3~N21!/221

3QS E2
M2

2mN
2U D , ~16!

where the argumentR indicates that this probability densit
is a function of the internal Jacobi coordinates the same
the integrands in Eqs.~13! and ~14!. The average value ca
be written

^A&5E AS E2
M2

2mN
2U D 3~N21!/221

3QS E2
M2

2mN
2U Dd3~N21!R/@C0G„3~N21!/2…v#.

~17!

Various thermodynamic quantities can be obtained
taking derivatives of the entropy, for example, the tempe
ture T and the pressureP. For the temperature

1

T
5S ]S

]ED
VN

, ~18!

which gives

^K&5^E2U&5
3~N21!

2
kBT1

M2

2mN
, ~19!

the connection between the temperature and the averag
netic energyK. In the EVN ensemble the average kinet
energy has anN instead ofN21 in the internal kinetic en-
ergy part because the total momentum constraint is not
cluded. The average in Eq.~19! is the ensemble averag
defined by Eq.~17!; note that the kinetic energy is a functio
of just the configuration coordinatesr5(r1 ,r2 ,...,rN)
through the relationK5E2U. The pressure can be calcu
lated from the volume derivative of the entropy

P

T
5S ]S

]VD
EN

. ~20!
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In order to carry out the volume derivative we may scale
coordinates in Eq.~13! so that the volume dependence
moved from the limits of integration explicitly into the inte
grand. If we call R8 the scaled coordinates withR8
5R/V1/3, then this substitution into Eq.~13! yields

F5VN21E S E2
M2

2mN
2U D 3~N21!/2

3QS E2
M2

2mN
2U Dd3~N21!R8/@C0G„3~N21!/211…#.

~21!

Taking the volume derivative of the entropy using this fo
for the phase volume leads to

P53~N21!kBT/22^]U/]V&, ~22!

where the first term is called the ideal gas contribution a
the second term the internal force contribution. The eval
tion of the volume derivative ofU was discussed in detail b
Ray @14#. This is the correct expression for the pressure t
can be directly found from Newton’s laws and the viri
theorem. In both theEVN andEVNM ensembles the expres
sion for the pressure has anN instead ofN21 in the ideal
gas contribution because the boost constraint is not inclu
in those ensembles@4,5,7#. This finally is the correction to
the pressure in Refs.@4,5# and shows that the correct en
semble to use in molecular dynamics is theEVNMG en-
semble. In general, relations involving the momenta, such
for example, Eq.~19!, will be the same in theEVNM and
EVNMG ensembles but volume derivatives of the entro
and related quantities will differ by factors ofN21 replacing
N. This would change the general volume derivative expr
sions given by Lustig@8# for the correct molecular dynamic
ensemble.

Occasionally one sees simulations in which, to take
reduction of spatial degrees of freedom by 3 into accoun
is assumed that one of the particles, say particle 1, is he
a fixed position. The effect of this is to introduce a de
function d(a2r1), with a the fixed position, into the phas
volume instead of the boostd function in Eq. ~10!. There
would also be the constraint that the momentum of partic
be zerod(p1). These twod functions would replace the tota
momentum constraint and boost constraint in the phase
ume in Eq.~10! and would yield a different ensemble. It
clear that this would lead to the sameN21 as in Eqs.~19!
and ~22!. The total momentum would not be constant b
cause it requires an external force to hold particle 1 at a fi
position, however, the energy would be constant because
-
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external force does no work. Thus, this ensemble may
used in molecular dynamics simulations and has some
vantages because one does not need to introduce Jacob
ordinates and momenta. However, it is somewhat arbitr
and artificial because it does not really correspond to con
tions associated with a real physical system.

IV. CONCLUSIONS

We have demonstrated that the correct molecular dyn
ics ensemble is theEVNMG ensemble or in Nose´ canonical
ensemble molecular dynamics theTVNMG ensemble, with
M50. The only assumptions are that Newton’s laws d
scribe the system’s motion and periodic boundary conditi
are employed. The differences between results in theEVN,
EVNM , andEVNMG ensembles are of order (1/N) and are
small for largeN, however, it is important to recognize th
correct ensemble corresponding to molecular dynam
simulations and for small systems the differences could
important. The constants of the motionG have appeared in
statistical mechanics before, for example, in association w
Monte Carlo studies of isolated clusters@15#.

Fluctuation formulas for thermodynamics response fu
tions, such as specific heat, elastic constants, thermal ex
sion coefficient, etc. can be derived for the molecular dyna
ics ensemble just as in any shell ensemble@4,5,7,8,16#.
Equation~17! gives the ensemble average in the molecu
dynamics ensemble. The time average over trajectories
molecular dynamics calculation correspond to this theor
cal average. Note also that this average can be calcul
using the Metropolis Monte Carlo method with the impo
tance function given by Eq.~16! just as in any shell en-
semble@17–19#. Although theEVN ensemble is almost uni
versally associated with molecular dynamics, it is ironic th
molecular dynamics, as it is usually implemented, does
generate this ensemble but the molecular dynamics ense
EVNMG . The Metropolis Monte Carlo method can be us
to generate theEVN, EVNM , andEVNMG ensembles but
only the latter can be generated using molecular dynamic
is clear that even in an inertial frame for whichM50, G
50, there is a difference between theEVN, EVNM , and
EVNMG ensembles because of theN21 factors. The boost
constraint would also influence other extended variable m
lecular dynamics methods which are used to numeric
generate other ensembles, such as Andersen’s@20#
isoenthalpic-isobaric ensemble, the isothermal-isobaric
semble, as well as the tensor versions of these ensem
discussed by Parrinello and Rahman@21# and Ray and Rah-
man @22#.
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