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Correct microcanonical ensemble in molecular dynamics
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The statistical-mechanics ensemble corresponding to equilibrium molecular dynamics simulations is differ-
ent than the usual microcanonidaVN ensemble. Historically molecular dynamics has been associated with
theEVNM ensemble, wher®l is the constant total linear momentum of the system. We show that the correct
ensemble associated with molecular dynamics iEW&MG ensemble wher6 is the constant of the motion
associated with Galilean boosts. The ensemble associated with molecular dynamics simulations has, appar-
ently, not been previously recognized. An earlier problem with the pressure in the new ensemble disappears.
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I. INTRODUCTION One result in Refd4,5] was that the expression found for
the pressure, by taking the derivative of the entropy with
The usual microcanonical ensemble of equilibrium statistespect to the volume, was the same inE\éN andEVNM

tical mechanics corresponds to a system of a fixed number gnsembles. This result was surprising because a direct appli-
partidesN, in a volumeV, having an energg. In the ter- cation of the virial theorem from Newton’s laws gives a dif-
minology of statistical mechanics this is tB&/N ensemble, ~ferent result in these two ensembles; the constraint of con-
and corresponds experimentally to an isolated system. Theiant total momentum leads to a reduction of the number of
fact that trajectories in equilibrium molecular dynamics degrees of freedom by 3 in the ideal gas part of the pressure
simulations generate an ensemble that is different than th@ the virial derivation. In the present paper we resolve this
EVN ensemble has long been recognifee3]. Because the Problem by showing that the ensemble corresponding to mo-
forces are all internal forces, which obey Newton’s third law,/€cular dynamics simulations is really tHeVNMG en-
and the imposition of periodic boundary conditions removesS€Mble, wheré is another quantity that is a constant of the
the external force that the container walls would exert on thdnotion. In this ensemble we obtain an expression for the
system of particles, the total momentum of thearticles is pressurfa that agrees with thg virial theorem derived from
also conserved. The phase space must, therefore, be fd€wton’s laws. Apparently this result has not been recog-
stricted to correspond to constant eneggnd constant total nlz.ed before in discussions of molecular dynamlcs. For large
linear momentunM . Because we assume that the simulationN it would give only a small,O(1/N), correction to the
uses periodic boundary conditions, the total angular momerRréssure. The constants of the motion representeG lye
tum is not a constant of the motion and therefore plays n@ssociated with Galilean boosftsansformation between in-
role in our discussions. Hence, molecular dynamics appear%rt'_a_l reference frames that have _|nf_|n_|tes_|mally dlffere_nt ve-
to generate th&€ VNM ensemble, which was named the mo- locities) and G is the generator of infinitesimal boosts like

lecular dynamics ensemble by Wof#]. In the EVNM en- is the generator of infinitesimal time translations avidis
semble all statesr(p) in phase space, consistent with the the generator of infinitesimal spatial translations. The intro-
given values of, V, N, andM, have équala priori prob- duction of the constan$s into theEVNM ensemble corrects

ability. the problems with the pressure and related quantities in Refs.

A comprehensive treatment of this molecular dynamics[4:5] While leaving other results unchanged and gives, fi-
EVNM, ensemble was given byagn and Ray[4]. They nally, the correct ensemble for molecula_r dynam_lcs, which is
also extended the treatment to the canonical'wNM en-  the EVNMG ensemble. The introduction o into the
semble[5]. In molecular dynamics this latter ensemble TVNM ensemble also corrects the pressure problem in the
would be associated with one of the versions of the extendef?M€ Way; the correct ensemble to associate with 'Hose
variable method of NOsg6] to generate the canonical en- canonical ensemble molecular dynamics is TWMNMG en-
semble for the system. The treatment of the ensembles FeMble; withM =0 [5]. The numerical value o& is related
Ref.[4] makes use of the exact Laplace transform method of© the initial position of the center of mass of the system.
treating energy shell ensembles presented by Pearson, Hali-
cioglu, and Tiller[7]. In related work Lustig/8] used the
method of Refs[4,5,7] to discuss a system of rigid mol-
ecules in theEVNM ensemble while Friedman and Raineri ~ The Hamiltonian for our system has the form of the ki-
[9] used theEVNM ensemble theory to study equal time netic energy of theN particles and the potential energy
velocity correlations in this ensemble. which we assume depends only on the interparticle dis-

II. JACOBI COORDINATES
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tances; that is, no external fields are present, nates alone or the momenta alone are also equal tdIde
N o The kinetic energy of the system in Jacobi coordinates is
Pi
r,p)=2, =—+tU(r). 1 N-1 B2 2
H(p)= 2 5+ U(n) (1) PR

N2
pi a
K=> —= +—, 5
_ _ Zﬁ 2m, a§=:1 2pne  2pn ®©
Many of the special forms that we shall introduce below are
associated with the simple quadratic momentum dependengghere the reduced massgs are defined by
assumed in Eql).
It is convenient to introduce a set of coordinates and mo- My M7
. . __ ¢« _ _naN

menta, referred to as Jacobi coordinates and momenta, for Ao~ yarr » @=12,...N=1 uy=My. (6)
the later discussion of phase space integrals. These coordi- !

nates are defined so the fitst—1 Jacobi coordinates are gqyation(s) gives the kinetic energy in terms of the internal
internal coordinates while thiith Jacobi coordinate is the inetic energy plus the kinetic energy of the center of mass
center of mass coordinate of the system of particles.NFor gnq is a well known result in classical mechanics. The re-
particles the Jacobi coordinates and momenta are defined By,ced masses satisfy the following product rule:
[10-12

N

Hmi

o

N-1
2 m;r; =1
=1

Ck: 1 7
Ry=——— T2, a=12,...N, rys1=0 (2 I == @)
Zl M where uy is the total mass of the system.
M . EVNMG ENSEMBLE

ma+1 “
Pazwz Pi— yaFiPa+1, a=1,... N=1, _ _
1 i=1 1 The EVN andEVNM ensembles have been discussed in

N some detail in Refs[4,5,7] so we shall present only the
P=S p 3 details for theEVNMG ensemble. Because the total linear
NT~ Pi 3 momentum of ouN particle system is constant, we can in-
tegrate this equation and obtain three different constants of

where the motion which we calG,
. i N N
M= m. i) ijk=l2. N @ G=2 pit— > myr;. ®)
=1 i=1 =1

Note that the Jacobi coordinates give the position of the cenNote that the value dB is associated with the initial position
ter of mass of the previous particles with respect to the nexgf the center of mass and from the point of view of Galilean
particle. The inverse of these transformations along Wwithransformations it is the generator of transformations to iner-
many other results concerning Jacobi coordinates and mafal frames moving at infinitesimal velocities with respect to
menta are worked out in detail in R¢fL2]. The Jacobi co-  a given inertial framg13]. We shall refer to the constraint
ordinates are orthogonal and are a generalization of the usugiatG be constant as the boost constraint. The entropy of the
coordinates for the center of mass and relative coordinates @fstem in theEVNMG ensemble is the logarithm of the
a two particle system. The Jacobi coordinates are canonicgshase volume

so the Jacobiarideterminant of the transformation mairix

from the original Cartesian coordinates and momenta to the S(E,V,N,M,G)=kgIn®(E,V,N,M,G), 9
Jacobi coordinates and momenta is equal to one. Also the

Jacobians for the transformation from the Cartesian coordiwhere the phase volume has the form

N N N
@(E,V,N,M,G):J @(E—H)a(M—E pi)-é(G—tE pi+ >, myr; | d®Nrd3Np/Cy, (10)
i=1 i=1 i=1

andCy is a constant, which fat different components has the valGg=Ah3NIIS_ N,! andN=3%_ N, with N, being the
number of particles of typa andA is a constant associated with thdunctions involvingM and G, and makes the phase
volume dimensionless. For tHeVN ensemble the phase volume has the form of @) but without the twod function
constraints andA=1 [4,7]. For theEVNM ensemble the phase volume has the form of @) without the § function
involving the boost constrairfd]. Transforming to Jacobi momenta in E4.0) and integrating ovePy the phase volume
becomes
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M2 N-1 p2 N
q)zf(a E—— L U|-8l G=tM+D, mr; |d3N-VpdNr/Cy. 11
( 2,U/N = 2,U4a izl | I) N ( )

In this form of the phase volume we can now carry out the integrals over the remaining Jacobi momenta using, for example,
the Laplace transform method of Pearson, Halicioglu, and Tili¢to obtain

2 3(N—1)/2 M2 N
c1>=J (E—Z—MN—U) @(E—%—u)@(c;—tm +Zl mm)d3Nr/[CoF(3(N—1)/2+1)], (12

where whereC is the normalization constant. If the functiédnde-
pends only on the internal spatial coordinates we may obtain
the average value as an integral over configuration space

N—-1
COZCN/ ((ZW)S(Nl)/ZH w3 using the probability density
a=1

2 3(N—1)/2—1
N — _ —
=CNM§/2/ (2D 2|, WEVNMG(R)—C( E 2 U)
=1 M2
2 qC) E—2——U), (16)
We now transform to Jacobi coordinates and carry out the N

integral over the center of mass coordinate in @¢) to end where the argumerR indicates that this probability density

up with is a function of the internal Jacobi coordinates the same as
the integrands in Eq$13) and(14). The average value can
M2 N1 be written
<I>:f E—2——U
N M2 3(N=1)/2—1
M?2 <A):jA(E———U)
XO|E— ——u)d3<N1>R/[cor(3(|\|—1)/2+ 1)]. 2pn
2punN 2
(13 XO|E— 2 U ) d3N"VR/I[CI'(B(N—1)/2)w].
N
This step has the effect of reducing the number of spatial (17)

integrations by 3 because the integral over the bédanc- Various thermodvnamic quantities can be obtained b
tion does not change any other parts of the integrand; rec:il}ll king derivatives ofythe ent?o for example. the tem erasi
we assume the potential energy depends only on the relati gxing d th hpy, Pie, P
coordinates and not the center of mass coordinate. tire T and the pressure. For the temperature

The density of states can be obtained by differentiating

the phase volume with respect to the energy, which gives E: ‘9_8 , (18)
T JE VN
2 3(N—-1)/2—-1
w= E:J E— M__U which gives
0"E 2,(LN
M2 =(E—uy=SN=D, o M (19
X 0 E—ﬁ—U)d3(N‘1)R/[COF(3(N—1)/2)]. (K)=¢ =73 BN 2un’
N

(14)  the connection between the temperature and the average ki-

netic energyK. In the EVN ensemble the average kinetic

In order to find the average value of a quanityve can energy has am instead ofN—1 in the intemal kinetic en-
integrate using the probability density in phase spaceergy part because the.total momentum constraint is not in-
namely (‘:Iuded. The average in Eql19) is th_e ensemt_)le average
' defined by Eq(17); note that the kinetic energy is a function

N of just the configuration coordinates=(rq,rs,...,rn)
through the relatiorK=E—U. The pressure can be calcu-

WEVNMG(r'p):Ca(E_H)é( M _;1 pi) lated from the volume derivative of the entropy

P [dS

N N
> T ==|=g| - (20)
xo| G-t pit 2 m.r.), (15) T (av)EN
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In order to carry out the volume derivative we may scale theexternal force does no work. Thus, this ensemble may be
coordinates in Eq(13) so that the volume dependence is used in molecular dynamics simulations and has some ad-
moved from the limits of integration explicitly into the inte- vantages because one does not need to introduce Jacobi co-
grand. If we call R’ the scaled coordinates witiR’ ordinates and momenta. However, it is somewhat arbitrary
=R/VY3, then this substitution into Eq13) yields and artificial because it does not really correspond to condi-
tions associated with a real physical system.
M2 3(N—1)/2
@zvN—lf (E— ——u)

IV. CONCLUSIONS

M
E- Zan U>d3(N1)R'/[CoF(3(N— 1)12+1)]. We have demonstrated that the correct molecular dynam-
ics ensemble is thEVNMG ensemble or in Noseanonical
(21)  ensemble molecular dynamics tfi& NMG ensemble, with
M=0. The only assumptions are that Newton’s laws de-
scribe the system’s motion and periodic boundary conditions
are employed. The differences between results inBRe\,
P=3(N—1)kgT/2—(3U/3V), (22) EVNM, andEVNMG ensembles are of order (\ly and are
small for largeN, however, it is important to recognize the
where the first term is called the ideal gas contribution anctorrect ensemble corresponding to molecular dynamics
the second term the internal force contribution. The evaluasimulations and for small systems the differences could be
tion of the volume derivative dff was discussed in detail by important. The constants of the moti@ have appeared in
Ray[14]. This is the correct expression for the pressure thastatistical mechanics before, for example, in association with
can be directly found from Newton’s laws and the virial Monte Carlo studies of isolated clustés].
theorem. In both th&VN andEVNM ensembles the expres- Fluctuation formulas for thermodynamics response func-
sion for the pressure has &hinstead ofN—1 in the ideal tions, such as specific heat, elastic constants, thermal expan-
gas contribution because the boost constraint is not includesion coefficient, etc. can be derived for the molecular dynam-
in those ensembleigt,5,7). This finally is the correction to ics ensemble just as in any shell ensemes,7,8,16.
the pressure in Refg§4,5] and shows that the correct en- Equation(17) gives the ensemble average in the molecular
semble to use in molecular dynamics is B NMG en-  dynamics ensemble. The time average over trajectories in a
semble. In general, relations involving the momenta, such asnolecular dynamics calculation correspond to this theoreti-
for example, Eq(19), will be the same in th&€VNM and cal average. Note also that this average can be calculated
EVNMG ensembles but volume derivatives of the entropyusing the Metropolis Monte Carlo method with the impor-
and related quantities will differ by factors bf— 1 replacing tance function given by Eq(16) just as in any shell en-
N. This would change the general volume derivative expressemble[17—19. Although theEVN ensemble is almost uni-
sions given by Lustid8] for the correct molecular dynamics versally associated with molecular dynamics, it is ironic that
ensemble. molecular dynamics, as it is usually implemented, does not
Occasionally one sees simulations in which, to take thegenerate this ensemble but the molecular dynamics ensemble
reduction of spatial degrees of freedom by 3 into account, iEVNMG. The Metropolis Monte Carlo method can be used
is assumed that one of the particles, say particle 1, is held &b generate thEVN, EVNM, andEVNMG ensembles but
a fixed position. The effect of this is to introduce a deltaonly the latter can be generated using molecular dynamics. It
function 5(a—r;), with a the fixed position, into the phase is clear that even in an inertial frame for whiéh=0, G
volume instead of the boost function in Eq.(10). There =0, there is a difference between tE&/N, EVNM, and
would also be the constraint that the momentum of particle EVNMG ensembles because of tNe- 1 factors. The boost
be zeros(p,). These twos functions would replace the total constraint would also influence other extended variable mo-
momentum constraint and boost constraint in the phase volecular dynamics methods which are used to numerically
ume in Eq.(10) and would yield a different ensemble. It is generate other ensembles, such as Andersdi2g]
clear that this would lead to the sare-1 as in Eqs(19) isoenthalpic-isobaric ensemble, the isothermal-isobaric en-
and (22). The total momentum would not be constant be-semble, as well as the tensor versions of these ensembles
cause it requires an external force to hold particle 1 at a fixediscussed by Parrinello and Rahnf@i] and Ray and Rah-
position, however, the energy would be constant because thiman[22].

Taking the volume derivative of the entropy using this form
for the phase volume leads to
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